21 research outputs found

    Near-Infrared Molecular Hydrogen Emission from the Central Regions of Galaxies: Regulated Physical Conditions in the Interstellar Medium

    Full text link
    The central regions of many interacting and early-type spiral galaxies are actively forming stars. This process affects the physical and chemical properties of the local interstellar medium as well as the evolution of the galaxies. We observed near-infrared H2 emission lines: v=1-0 S(1), 3-2 S(3), 1-0 S(0), and 2-1 S(1) from the central ~1 kpc regions of the archetypical starburst galaxies, M82 and NGC 253, and the less dramatic but still vigorously star-forming galaxies, NGC 6946 and IC 342. Like the far-infrared continuum luminosity, the near-infrared H2 emission luminosity can directly trace the amount of star formation activity because the H2 emission lines arise from the interaction between hot and young stars and nearby neutral clouds. The observed H2 line ratios show that both thermal and non-thermal excitation are responsible for the emission lines, but that the great majority of the near-infrared H2 line emission in these galaxies arises from energy states excited by ultraviolet fluorescence. The derived physical conditions, e.g., far-ultraviolet radiation field and gas density, from [C II] and [O I] lines and far-infrared continuum observations when used as inputs to photodissociation models, also explain the luminosity of the observed H2 v=1-0 S(1) line. The ratio of the H2 v=1-0 S(1) line to far-IR continuum luminosity is remarkably constant over a broad range of galaxy luminosities; L_H2/L_FIR = about 10^{-5}, in normal late-type galaxies (including the Galactic center), in nearby starburst galaxies, and in luminous IR galaxies (LIRGs: L_FIR > 10^{11} L_sun). Examining this constant ratio in the context of photodissociation region models, we conclude that it implies that the strength of the incident UV field on typical molecular clouds follows the gas density at the cloud surface.Comment: Accepted for ApJ, 24 pages, 17 figures, for complete PDF file, see http://kao.re.kr/~soojong/mypaper/2004_pak_egh2.pd

    Whole Earth Telescope observations of the pulsating subdwarf B star PG 0014+067

    Get PDF
    PG 0014+067 is one of the most promising pulsating subdwarf B stars for seismic analysis, as it has a rich pulsation spectrum. The richness of its pulsations, however, poses a fundamental challenge to understanding the pulsations of these stars, as the mode density is too complex to be explained only with radial and nonradial low-degree (l< 3) p-modes without rotational splittings. One proposed solution, suggested by Brassard et al. in 2001 for the case of PG 0014+067 in particular, assigns some modes with high degree (l=3). On the other hand, theoretical models of sdB stars suggest that they may retain rapidly rotating cores, and so the high mode density may result from the presence of a few rotationally split triplet (l = 1) and quintuplet (l = 2) modes, along with radial (l = 0) p-modes. To examine alternative theoretical models for these stars, we need better frequency resolution and denser longitude coverage. Therefore, we observed this star with the Whole Earth Telescope for two weeks in 2004 October. In this paper we report the results of Whole Earth Telescope observations of the pulsating subdwarf B star PG 0014+067.We find that the frequencies seen in PG 0014+067 do not appear to fit any theoretical model currently available; however, we find a simple empirical relation that is able to match all of the well-determined frequencies in this star

    The everchanging pulsating white dwarf GD358

    Get PDF
    We report 323 hours of nearly uninterrupted time series photometric observations of the DBV star GD 358 acquired with the Whole Earth Telescope (WET) during May 23rd to June 8th, 2000. We acquired more than 232 000 independent measurements. We also report on 48 hours of time-series photometric observations in Aug 1996. We detected the non-radial g-modes consistent with degree l = 1 and radial order 8 to 20 and their linear combinations up to 6th order. We also detect, for the first time, a high amplitude l = 2 mode, with a period of 796 s. In the 2000 WET data, the largest amplitude modes are similar to those detected with the WET observations of 1990 and 1994, but the highest combination order previously detected was 4th order. At one point during the 1996 observations, most of the pulsation energy was transferred into the radial order k = 8 mode, which displayed a sinusoidal pulse shape in spite of the large amplitude. The multiplet structure of the individual modes changes from year to year, and during the 2000 observations only the k = 9 mode displays clear normal triplet structure. Even though the pulsation amplitudes change on timescales of days and years, the eigenfrequencies remain essentially the same, showing the stellar structure is not changing on any dynamical timescale

    Constraining the evolution of ZZ Ceti

    Get PDF
    We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf ) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt ≤ (5:5 ± 1:9) x 10 15 s s-ˡ, after correcting for proper motion. Our results are consistent with previous _PP values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is |P/PP| ≥ 1.2 Gyr, comparable to the theoretical cooling timescale for the star. Our current stability limit for the period 213.13 s is only slightly less than the present measurement for another DAV, G117-B15A, for the period 215.2 s, establishing this mode in ZZ Ceti as the second most stable optical clock known, comparable to atomic clocks and more stable than most pulsars. Constraining the cooling rate of ZZ Ceti aids theoretical evolutionary models and white dwarf cosmochronology. The drift rate of this clock is small enough that we can set interesting limits on reflex motion due to planetary companions

    Normal modes and discovery of high-order cross-frequencies in the DBV white dwarf GD 358

    Get PDF
    We present a detailed mode identification performed on the 1994 Whole Earth Telescope (WET) run on GD 358. The results are compared with that obtained for the same star from the 1990 WET data. The two temporal spectra show very few qualitative differences, although amplitude changes are seen in most modes, including the disappearance of the mode identified as k = 14 in the 1990 data. The excellent coverage and signal-to-noise ratio obtained during the 1994 run lead to the secure identification of combination frequencies up to fourth order, i.e. peaks that are sums or differences of up to four parent frequencies, including a virtually complete set of second-order frequencies, as expected from harmonic distortion. We show how the third-order frequencies are expected to affect the triplet structure of the normal modes by back-interacting with them. Finally, a search for l = 2 modes was unsuccessful, not verifying the suspicion that such modes had been uncovered in the 1990 data set

    Normal modes and discovery of high-order cross-frequencies in the DBV white dwarf GD 358

    Get PDF
    We present a detailed mode identification performed on the 1994 Whole Earth Telescope (WET) run on GD 358. The results are compared with that obtained for the same star from the 1990 WET data. The two temporal spectra show very few qualitative differences, although amplitude changes are seen in most modes, including the disappearance of the mode identified as k = 14 in the 1990 data. The excellent coverage and signal-to-noise ratio obtained during the 1994 run lead to the secure identification of combination frequencies up to fourth order, i.e. peaks that are sums or differences of up to four parent frequencies, including a virtually complete set of second-order frequencies, as expected from harmonic distortion. We show how the third-order frequencies are expected to affect the triplet structure of the normal modes by back-interacting with them. Finally, a search for l = 2 modes was unsuccessful, not verifying the suspicion that such modes had been uncovered in the 1990 data set

    New whole earth telescope observations of cd-247599 : steps towards delta scuti star seismology

    No full text
    92 h of new Whole Earth Telescope observations have been acquired for the δ Scuti star CD -24 7599. All the seven pulsation modes reported by Handler et al. are confirmed. However, significant amplitude variations which are not caused by beating of closely spaced frequencies occurred within two years. Analysing the combined data of both WET runs, we detect six further pulsation modes, bringing the total number up to 13. We also examine our data for high-frequency pulsations similar to those exhibited by rapidly oscillating Ap stars, but we do not find convincing evidence for variability in this frequency domain. From new colour photometry and spectroscopy we infer that CD-24 7599 is a hot mainsequence δ Scuti star with approximately solar metallicity and ν sin i = 52 ± 2 km s -1. We cannot yet propose a definite pulsation mode identification, but we report the detection of a characteristic frequency spacing between the different modes. We ascribe it to the simultaneous presence of l = 1 and l = 2 modes of consecutive radial order. A comparison of this frequency spacing with frequencies of solar-metallicity models, as well as stability analysis, allows us to constrain tightly the evolutionary state of CD - 24 7599. It is in the first half of its main-sequence evolution, and has a mass of 1.85 ± 0.05 M̛ and a mean density of p = 0.246 ± 0.020 P̛. This yields a seismological distance of 650 ± 70 pc, which i~ as accurate as distance determinations for 0 Scuti stars observed in clusters. Most of the pulsation modes are pure p modes of radial order k = 4-6, but the gl mode of l = 2 is likely to be excited and observed as well. Since a significant contribution to this mode's kinetic energy comes from the outer part of the convective core, CD-247599 becomes particularly interesti1)g for testing convective overshooting theories

    Asteroseismology of RXJ 2117+3412, the hottest pulsating PG 1159 star

    Get PDF
    The pulsating PG 1159 planetary nebula central star RXJ 2117+3412 has been observed over three successive seasons of a multisite photometric campaign. The asteroseismological analysis of the data, based on the 37 identified l = 1 modes among the 48 independent pulsation frequencies detected in the power spectrum, leads to the derivation of the rotational splitting, the period spacing and the mode trapping cycle and amplitude, from which a number of fundamental parameters can be deduced. The average rotation period is 1.16 ± 0.05 days. The trend for the rotational splitting to decrease with increasing periods is incompatible with a solid body rotation. The total mass is 0.56⁺⁰˙⁰²₋₀.₀₄ Mѳ and the He-rich envelope mass fraction is in the range 0.013–0.078 M*. The luminosity derived from asteroseismology is log(L/Lѳ) = 4.05⁺⁰˙²³₋₀.₃₂ and the distance 760⁺²³⁰₋₂₃₅ pc. At such a distance, the linear size of the planetary nebulae is 2.9 ± 0.9 pc. The role of mass loss on the excitation mechanism and its consequence on the amplitude variations is discussed

    Asteroseismology of RXJ 2117+3412, the hottest pulsating PG 1159 star

    Get PDF
    The pulsating PG 1159 planetary nebula central star RXJ 2117+3412 has been observed over three successive seasons of a multisite photometric campaign. The asteroseismological analysis of the data, based on the 37 identified l = 1 modes among the 48 independent pulsation frequencies detected in the power spectrum, leads to the derivation of the rotational splitting, the period spacing and the mode trapping cycle and amplitude, from which a number of fundamental parameters can be deduced. The average rotation period is 1.16 ± 0.05 days. The trend for the rotational splitting to decrease with increasing periods is incompatible with a solid body rotation. The total mass is 0.56⁺⁰˙⁰²₋₀.₀₄ Mѳ and the He-rich envelope mass fraction is in the range 0.013–0.078 M*. The luminosity derived from asteroseismology is log(L/Lѳ) = 4.05⁺⁰˙²³₋₀.₃₂ and the distance 760⁺²³⁰₋₂₃₅ pc. At such a distance, the linear size of the planetary nebulae is 2.9 ± 0.9 pc. The role of mass loss on the excitation mechanism and its consequence on the amplitude variations is discussed
    corecore